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Abstract. In this work, we have numerically integrated in space and time the effective-mass
nonlinear Schr̈odinger equation for a composite fermion in a double-quantum-well system.
Considering many-body effects and the existence of an external applied bias, a time-varying
composite-fermion effective magnetic field with an amplitude which is oscillating with time in
each quantum well has been obtained. As a consequence, the magnetic focusing peak positions
in the magnetoresistance measurements will be shifted to a lower magnetic field value.

1. Introduction

Since the discovery of the integer and fractional quantum Hall effects (QHE), the properties
of two-dimensional (2D) electron systems in a strong magnetic field have been the focus of
great attention [1]. In the fractional quantum Hall effect, the composite-fermion (CF) model
has provided us with an intuitive picture for interpreting electron correlation phenomena at
high magnetic fields [2, 3]. The CF model postulates the existence of new particles called
composite fermions, which consist of electrons to which an even number (φ = 2m) of
magnetic flux quanta have been attached by virtue of many-body interactions. Hence,
we are able to obtain a mapping of the fractional QHE at Landau level filling factor
ν = p/(2mp + 1), wherem andp are integers, onto the integer QHE atν∗ = |p|, where
ν∗ is the CF Landau level filling factor.

Lopez and Fradkin [4] showed formally the equivalence between a system of electrons
at filling factorsν and a system of fermions interacting with a Chern–Simons gauge field
at integer filling factorp. The fermion Chern–Simons picture of Lopez and Fradkin was
further developed by Halperin, Lee and Read [3], who used it to study the case of aν = 1/2
filling fraction. Furthermore, the existence of the CFs at filling 1/2 has been experimentally
checked by (i) studying the cyclotron resonance of the CFs nearν = 1/2 [5], (ii) studying
the cyclotron resonance of the CFs in an array of antidots [6], (iii) observing that the
gaps increase linearly with the magnetic field [7], (iv) studying the Shubnikov–de Haas
oscillations at aroundν = 1/2 [8] and (v) detecting the CFs by magnetic focusing [9, 10].

In addition to this, and in the fractional QHE regime, the tunnelling between two parallel
2D electron systems has been recently studied by Eisenstein, Pfeiffer and West [11, 12].
In this experiment, theI–V characteristics exhibited a strong suppression of the tunnelling
current at low biases and a pronounced peak in the neighbourhood ofeVmax∼ e2/4πε〈a〉,
whereε is the dielectric constant and〈a〉 is the average inter-electron spacing. This result
suggested that there is an excitonic energy cost ofeVmax for moving an electron from one
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quantum well to the other. In contrast, in the case ofB = 0 the sample exhibited a sharply
peaked conductance at zero bias.

From a theoretical point of view, the experimental suppression of the tunnelling current
in symmetric quantum wells [11, 12] has been analysed using a classical model for the
description of some properties of a 2D electron system in a strong magnetic field [13]. In
addition to this, such an effect has also been studied using a Wigner crystal model [14],
assuming a hydrodynamic model for low-energy excitations in a quantum liquid [15], with
the proposal of an exact sum rule for the tunnelling density of states [16], and calculating
the one-electron Green’s functions in an interacting 2D electron system [17].

In the CF model, the detection of CFs by magnetic focusing was experimentally
reported by Goldmanet al [9]. They observed quasiperiodic magnetic focusing peaks
in heterojunction samples. The direction of focusing was in good quantitative agreement
with that expected from semiclassical transport by CFs of chargee. They showed that the
classical focusing occurs up to an effective magnetic field for which the cyclotron radius
is approximately equal to the undepleted opening in the constriction. The samples were
prepared from a high-mobility GaAs–GaAlAs heterojunction. However, we can notice that
a double-quantum-well semiconductor heterostructure, originally designed for studying the
tunnelling between two parallel 2D electron systems [11, 12], could be chosen in these
magnetic focusing experiments. In such a case, we can expect modification of the classical
focusing condition due to the tunnelling oscillations between the quantum wells. In this
way, the experimental suppression of the tunnelling current in a correlated quantum liquid
could be studied using magnetoresistance measurements.

In view of the above comments, and from a theoretical point of view, we can see that
there is an urgent need to evaluate the CF dynamics in a double-quantum-well system.
In this work, we will propose a one-dimensional effective-mass Schrödinger equation for
studying the charge-density dynamics in the heterostructure growth direction (along thez-
axis). In the semiconductor layer plane (thex–y plane), the time-dependent CF dynamics
will also be analysed. Many-body effects and a time-dependent CF effective magnetic field
will be considered in our model. Finally, we shall show that the tunnelling oscillations
between the quantum wells will allow the existence of a new kind of CF dynamics in the
x–y plane, and thus a new kind of magnetoresistance measurement for the system.

2. The model

In order to study the dynamics of CFs in the structure growth direction, we need to solve
the time-dependent Schrödinger equation associated with a CF in a quantum well potential.
The CF wave functionψCF will be given by the nonlinear Schrödinger equation

i h̄
∂

∂t
ψCF(z, t) =

[
− h̄2

2m∗
∂2

∂z2
+ Ve−e(|ψCF|2)+ Vqw(z)+ Vbias(z)+ Vexc

]
ψCF(z, t) (1)

wherem∗ is the electron GaAs effective mass in the growth direction,Vqw is the quantum
well potential, Vbias is a potential due to an external applied bias,Vexc is an excitonic
potential due to correlation effects andVe−e is the potential given by the electron–electron
interaction in the heterostructure region. Such a many-body potential is given by Poisson’s
equation

∂2

∂z2
Ve−e(z, t) = ens

ε
|ψCF(z, t)|2 (2)

wherens is the initial electronic sheet density. We should point out that in equation (1)
the Ve−e many-body potential is a time-dependent quantity. Such a result is given by
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equation (2) whereVe−e depends on the wave-function form.
Now we study the form of the excitonic potential in equation (1). TheVexc-term

accounts for electron correlation effects. In principle, it is possible to obtain a strongly
correlated system in a GaAs semiconductor layer if we apply a magnetic field large enough
to force the Fermi level into the lowest Landau level. Under these conditions, an electron
that tunnels between the two layers will produce a strongly localized charge defect [11,
12]. For example, if an electron tunnels from the left-hand quantum well to the right-hand
semiconductor layer, due to an external bias, an excitonic−q-charge will be produced
in the right-hand quantum well. In addition, the hole that the electron that has tunnelled
leaves behind in the left-hand quantum well will also produce a+q-charge in the left-hand
semiconductor layer. Then, we have opposite excitonic charges+q and−q in the two
quantum wells [18].

In order to obtain an equation forVexc, we will consider the two semiconductor layers
as two planes of areaA bearing equal but opposite excitonic charges−q and+q [18].
Then, the potential difference can be written as

Vexc= 4πk
q

A
d (3)

whered is the distance between the planes andk the Coulomb constant for GaAs. In our
case,q/A is the charge density of electrons that have tunnelled (or excitonic holes) in each
quantum well andd is the quantum well centre-to-centre spacing. TheVexc-term accounts
for correlation effects. In the absence of an external applied magnetic field, we have that
Vexc = 0 in equation (1). In the case of a strongly correlated 2D electron system,Vexc is
given by equation (3), i.e.,Vexc 6= 0 in equation (1). In the experiments [11, 12], correlation
effects were found over a broad range of Landau level filling fraction (0.48< ν < 0.83).

In addition, we know that the numerical integration over time of equation (1) allows us
to obtain the electron charge densityQab in a defined semiconductor region [a, b] at any
time t :

Qab(t) =
∫ b

a

dz |ψ(z, t)|2 (4)

wherea and b are the quantum well limits. Assuming thatQleft = Qright at t = 0, the
charge density of electrons that have tunnelled (or excitonic holes) in a quantum well at
t > 0 can be written asq/A = (Qab(t)−Qab(t = 0))ns/2, i.e.,

q

A
= ns

2

(∫ b

a

dz |ψ(z, t)|2−
∫ b

a

dz |ψ(z, t = 0)|2
)

(5)

wherens is the initial 2D electron sheet density in both quantum wells. At this point, we can
notice that in equation (5) the charge density of electrons that have tunnelled (or excitonic
holes) in a quantum well is a time-dependent quantity. If the sign ofq/A is positive, we
have a sheet density of electrons that have tunnelled in the quantum well. In contrast, if
the sign is negative, we can find a hole charge density in the semiconductor layer.

In the CF model, part of the external magnetic field is incorporated into the new particle
and, then, the CF experiences a reduced (effective) magnetic field

B∗ = B − φ 2πns
h̄c

e
(6)

where n is the electron (and CF) density in each quantum well. In this way, the CFs
experience zero net magnetic field at exactly half-filling, so they are expected to form a
Fermi surface and have a renormalized mass, dependent only on many-body interactions. As
the applied magnetic fieldB deviates from the average magnetic field due to the composite



4680 H Cruz

fermionsBav = φ 2πnsh̄c/e, the effective magnetic fieldB∗ quantizes the CFs into Landau
levels in analogy to Landau quantization of usual electrons.

In the double-quantum-well case, we can define a time-dependent effective magnetic
field in each quantum well as

B∗L (R)(t) = B − φ 2πns
h̄c

e
QL(R)(t) (7)

whereQL(t) andQR(t) are the charge densities in the left-hand and right-hand quantum
wells, respectively. Taking into account equation (4), both of the effective magnetic fields,
B∗L andB∗R, can be easily calculated.

Now we discretize time using a superscriptn and spatial position using a subscriptr.
Thus,ψCF → κnr . The variousz-values becomer δz in the conduction band, whereδz is
the mesh width. Similarly, the time variable takes the valuesn δt , whereδt is the time
step. In this way, and to treat the time development, we have used a unitary propagation
scheme for the evolution operator, obtaining a tridiagonal linear system that can be solved
by standard numerical methods [19]. In addition, we have also solved the Poisson equation
associated withVe−e using another standard tridiagonal numerical method for eacht-value.
Equations (1) and (2) are both self-consistently solved.

In our calculations, we have taken two different Gaussian wave packets centred in the
two quantum wells as our initial wave function. A small part of the wave function is
localized in the quantum well barrier regions. Taking into account the definition ofq/A in
equation (5), we can notice that there is no contribution from such small wave-packet parts
to the calculated electron density.

Figure 1. The conduction band potential and wave function att = 2 ps. We have taken
Vbias= 14 mV.

3. Results and discussion

In figure 1, the amplitude of the wave function|ψ |2 and the conduction band potential
at t = 2 ps are shown. In this figure, we have takenVbias = 14 mV. We have
numerically integrated equations (1) and (2) using an initial 2D electron sheet density
equal tons ∼ 1.6× 1011 cm−2 for each quantum well. Then, the equations were solved
numerically using a spatial mesh size of 0.5Å and a time mesh size of 0.2 au, and a finite



Magnetic focusing of composite fermions 4681

box (4000Å) large enough for us to be able to neglect border effects. We have considered
a GaAs/Ga0.7Al 0.3As double-quantum-well system which consists of a left-hand quantum
well 200 Å wide, a right-hand quantum well 200̊A wide and a barrier of thickness equal
to 20 Å.

Figure 2. The charge density in the left-hand quantum
well (Qab) versus time at different applied biases.

In figure 2, we have plotted the charge density in the left-hand quantum well versus
time at different applied biases. The charge-density values have been obtained through the
use of equation (4). The total charge density in both quantum wells has been taken as
equal to 1. In figure 2, the existence of tunnelling oscillations between the two quantum
wells is clearly shown. We can also notice that smooth curves have not been obtained from
our numerical integration. The different lines shown in figure 2 display small oscillations.
Such a result is given by equation (1) whereVe−e depends on the wave-function form in our
nonlinear Schr̈odinger equation. Due to theVe−e potential being a wave-dependent quantity,
the charge dynamically trapped in the two wells produces a reaction field which modifies
the time evolution of the system. As a result, the charge density localized in the left-hand
quantum well displays small oscillations as time progresses.

Figure 3. The amplitude of the tunnelling osc-
illations versus the applied bias.

In figure 3, we have plotted the amplitude of the tunnelling oscillations versus applied
bias. Up to a certain value of the applied bias (Vbias = 14 mV), we have found that the
amplitude of the tunnelling oscillations is increased as we increaseVbias. In contrast, and
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in the case ofVbias > 14 mV, it is found that the amplitude is decreased if we increase
Vbias. Such a result can be easily explained, if we consider two new points. Firstly, we
know that the electron energy levels of the two wells are exactly aligned atVbias= 0. On
increasingV , the amplitude of the oscillations will also be increased due to the field-induced
tunnelling process (figure 2). However, we know that if the applied bias is higher than the
level splitting between the two quantum wells, the resonant condition is not obtained and,
then, the tunnelling process is not allowed. Secondly, and from equations (3) and (5), we
know that if some electrons tunnel from one quantum well to another under the action
of an external bias, we have a finite value forVexc. Then, the excitonic field obtained is
in opposition to the applied bias and the process of tunnelling between the two wells is
slowed. In this way, the tunnelling peak is shifted to a higher voltage value. In other
words, there is an excitonic energy cost for moving an electron from one quantum well to
the other due to the field-inducedVexc-term. Taking into account the relation between the
oscillation amplitude and the tunnelling current, we can see that both effects are consistent
with available experimental data. In experiments, Eisensteinet al [11] found a suppression
of the tunnelling current at low biases and a pronounced peak at a higher voltage value.

Figure 4. Composite-fermion trajectories. (a) Thej = 1 case. (b) Thej = 2 case. Line 1:B∗
is constant. Line 2:m∗CF = 0.067m0 andVbias= 0.1 mV.

For the single-quantum-well case, Goldmanet al [9] reported the observation of CFs
in transverse-focusing experiments. They observed quasiperiodic resistance peaks in the
focusing geometry as expected for CFs. The sample geometry used in the experiment is
shown in figure 4. The current is passed through the left-hand constriction (x = 0 µm in
figure 4) and the voltage developed across the right-hand constriction (x = 4µm in figure 4)
is measured as a function of the magnetic field. From a semiclassical point of view, CFs
coming out of the left-hand constriction with the Fermi velocity execute cyclotron motion.
WhenB∗ is such that 2jR = l (l is the constriction separation,j is an integer andR is the
cyclotron radius), the CFs are focused into the right-hand constriction. We have assumed
specular reflections from flat gates. In figure 4(a) and figure 4(b), we have plotted thej = 1
and j = 2 cases (lines 1), respectively. Then, focusing peaks occur atB∗j = j 1B∗, with
the period1B∗ = 2h̄k∗F /el wherek∗F is the Fermi wave vector of the CFs.
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In the double-quantum-well case, we have charge-density oscillations between the two
quantum wells (figure 2). As a consequence, and from equation (7), the amplitude of the
effective magnetic field is also oscillating with time. The motion of the CF wave packets
in each quantum well can be described by the semiclassical equations of motion [20]

h̄
d

dt
k∗F = −e(v ×B∗L (R)) (8)

wherev = (1/h̄)∂εCF(k)/∂k for a dispersionεCF(k) in the x–y plane. However, the CF
dispersion relation and the CF effective mass are actually unknown [20]. Taking this into
account, we have integrated equation (8) considering two different CF effective-mass values,
i.e.,m∗CF = 0.067m0 andm∗CF = 0.5m0. The first value is equal to the GaAs effective-mass
value in the conduction band. The dynamics has been studied in the absence of electric
fields. Furthermore, att = 0, the value of the oscillating magnetic field in each quantum
well is unclear. Such an initial condition problem can be solved by considering all possible
B∗L (R)-values att = 0. Then, an averaged value for the peak position on thex-axis 〈L〉
can be obtained.

In figure 4, and in the double-quantum-well case, we have also plotted a CF trajectory in
the j = 1, 2 cases considering charge-density oscillations between the two quantum wells.
We can notice that the position of the focusing,L, on thex-axis is at a lower value than
the right-hand constriction position (x = 4 µm). Such an effect is due to the existence of
an oscillating effective magnetic field.

Figure 5. 〈L〉 versus the applied bias. Lines with diamonds:m∗CF = 0.5m0. Lines with squares:
m∗CF = 0.067m0.

In figure 5, we show〈L〉 versus the applied bias in thej = 1 andj = 2 cases. We
can notice that the position of the focusing on thex-axis moves to lower values as we
increase the applied bias. Such an effect can be easily explained as follows. If we increase
the applied bias, the amplitude of the oscillating charge density is increased (figure 3). As
a consequence, and from equation (7), the amplitude of the oscillating effective magnetic
field is also increased. Then, the CF trajectories obtained are modified due to the existence
of an oscillating effective magnetic field. At this point, we should remark that if〈L〉 is
decreased, the magnetic focusing position is shifted to a lower magnetic field value.

In such a case, a new kind of magnetoresistance measurement will be obtained in the
double-quantum-well system. In the double-quantum-well case, we can expect to obtain
two new effects in the magnetoresistance data. Firstly, and as we increase the applied
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bias, the different focusing peak positions will be shifted to lower magnetic field values.
Secondly, we can also notice that we have obtained different values of〈L〉 in the cases
wherej = 1 andj = 2 (figure 5). As a result, the new resistance measurements will not
exhibit equidistant focusing peaks ifB is increased.

In figure 5, it is also seen that the oscillating-field effect becomes important as we
decrease the CF effective mass (i.e., as we increase|v|). If the tunnelling frequency is
much higher than the cyclotron frequency, then, in principle, the effect of the oscillating
effective magnetic field on the CF trajectories can be neglected. In figure 5, we can also
notice that, in thej = 2 case, the modification of the value of〈L〉 obtained is not very
large. In such a case, the dispersion of theL-values has been increased due to the CF
reflections from flat gates.

In summary, in this work we have numerically integrated over space and time a nonlinear
effective-mass Schrödinger equation for CFs in a double-quantum-well system. Many-
body effects and an external applied bias have been considered in our model. It is found
that the CF effective magnetic field in each quantum well displays oscillations as time
progresses. This is in part related to the CF tunnelling process in the heterostructure growth
direction. As a consequence, the possibility of there being a new kind of CF dynamics in
the semiconductor layer plane of a double-quantum-well system has been demonstrated. In
such a case, the magnetic focusing peak positions are shifted to lower effective magnetic
field values. In principle, an experimental observation of such a process is possible.
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